个人简历:
张寒任生物医学工程学院常任轨副教授 (Tenure-track Associate Professor)、研究员、博导、独立课题组组长 (PI)、脑疾病与智能计算实验室 (Disease and Intelligent Analytics Lab, DIAL) 主任。他在浙江大学信息与电子工程学系获工学学士学位,在北京师范大学认知神经科学与学习国家重点实验室获认知神经科学博士学位,历任杭州师范大学认知与脑疾病研究中心研究员、美国北卡罗来纳大学教堂山分校 (University of North Carolina at Chapel Hill) 放射系 (Department of Radiology) 和生物医学研究成像中心(Biomedical Research Imaging Center, BRIC) 博士后、讲师、助理教授、张江实验室脑与智能科技研究院研究员。
张寒在脑网络、脑影像及脑发育/老化及其在临床中的应用研究形成了130多篇论文,发表在包括 PNAS, Brain, Human Brain Mapping, NeuroImage, IEEE TMI/Trans Cybernetics 等期刊以及 AAAI,MICCAI 等会议上,被引5600余次,H因子41,H10因子84。他是国家海外高层次人才青年项目获得者、上海市海外高层次人才青年项目获得者,上海市浦江人才,60余国际期刊/会议/研究基金的评审人和4个国际期刊的副主编,曾做为PI之一参与了美国婴儿脑连接组 (Baby Connectome Project, BCP) 计划。他合作和独立培养硕士生16名、博士生20名 (包括访问学生) ,是9名本科生的合作导师,并指导了22名访问学者和19名博士后,指导的学生获得MICCAI会议的美国国立卫生局奖 (NIH Award) 和国际人脑图谱大会最佳摘要奖 (OHBM Merit Abstract Award) 等。
目前,他作为项目负责人领导包括科技部科技创新2030—“脑科学与类脑研究”重大项目(0-6岁婴幼儿脑发育)、上海市基础研究特区计划项目等一批国家和地方研究重点重大项目,并作为研究骨干参与了另一项6-18岁儿童发育相关科技部重大项目、阿尔茨海默症超早期诊断基金委重点项目。目前,研究组形成了由10名工程师/高级工程师,14名研究生,1名博士生,2名博士后,4名本科生组成的研究团队,与知名医院和龙头企业合作,开展脑发育、脑老化、脑疾病的人工智能前沿技术和临床转化基础和应用研究。
婴幼儿脑发育图谱 构建中国最大样本量最全数据维度的0-6岁婴幼儿纵向大数据,基于医学影像人工智能和神经影像计算技术开发婴幼儿脑影像精准个体化自动分析工具包,构建中国人群首个0-6岁脑结构、功能、连接的发育图谱、轨迹、常模,预测认知发展,学习障碍,重大发育疾病,与临床合作开展发育异常如ASD,ADHD的早诊早治基础研究,与心理学和教育学研究者合作开展学龄前、学龄期科学养育和教育方法研究
人脑异常老化研究 利用多模态脑影像(MRI,EEG,PET,fNIRS)和基于AI的智能融合技术刻画典型老化轨迹,建立阿尔茨海默症超早期辅助筛查和认知下降预测模型,和临床老年科、神经内科、精神科合作,揭示老年退行性疾病及其共患病的脑机制,优化治疗策略,提升诊疗水平,改善老年退行性疾病人群和家庭的生活满意度
多模态脑网络建模 作为核心算法和课题组长期关注的科研方向,我们将围绕这一方向,基于课题组在fMRI/dMRI/fNIRS数据上构建脑网络的基础,以及利用脑网络开展临床基础研究的经验,进一步探索方便易行的脑结构、功能、分子、代谢、电生理网络构建和网络学习算法,深度刻画人脑多尺度、自适应的复杂时空连接特性,并用于神经和精神疾病的辅助诊疗
教学与课程:
研究生论文写作
科学表达与交流
脑科学与脑疾病
学术任职:
IEEE 资深会员
Brain Informatics 杂志副主编
Frontiers in Oncology 杂志副主编
Frontiers in Oncology 杂志特邀编辑
医学图像计算研讨会在线委员会委员
PLOS ONE 杂志副主编
Journal of Alzheimer's Disease 杂志副主编
上海市生物医学工程学会人工智能专委会 委员
上海市生物医学工程学会新生儿专委会 副主委
阿尔茨海默病防治协会人工智能分委会 委员
福建新生儿疾病重点实验室学术委员会 委员
上海市科学技术委员会科技创新行动计划——“探索者计划”专家委员会委员
代表性论文:
脑网络构建方法学:
Ghanbari, M., Zhou, Z., Hsu, L.-M., Han, Y., Sun, Y., Yap, P.-T., Zhang, H.*, Shen, D.*, Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer’s Disease, Neuroinformatics, 2021, Accepted.
Li, G., Liu, Y., Zheng, Y., Wu, Y., Li, D., Liang, X., Chen, Y., Cui, Y., Yap, P.-T., Qiu, S.*, Zhang, H.*, Shen, D.*, 2021, Multiscale Neural Modeling of Resting-state fMRI Reveals Executive-Limbic Malfunction as a Core Mechanism in Major Depressive Disorder, NeuroImage: Clinical, 2021, 31: 102758.
Zhou, Z., Chen, X., Zhang, Y., Hu, D., Qiao, L., Yu, R., Yap, P.-T., Pan, G.*, Zhang, H.*, Shen, D.*, A Toolbox for Brain Network Construction and Classification (BrainNetClass). Human Brain Mapping, 2020, 41(10): 2808-2826.
Li, G., Liu, Y., Zheng, Y., Li, D., Liang, X., Chen, Y., Cui, Y., Yap, P.-T., Qiu, S.*, Zhang, H.*, Shen, D.*, Large-scale Dynamic Causal Modeling of Major Depressive Disorder based on Resting-state fMRI. Human Brain Mapping, 2019.
Yu, R.#, Zhang, H.#, An, L., Chen, X., Wei, Z., Shen, D., 2017. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification. Human Brain Mapping, 38(5): 2370-2383.
脑疾病个体诊断:
Chen, Y.#, Zhou, Z.#, Liang, Y., Tan X., Li, Y., Qin, C., Feng, Y., Ma, X., Mo, Z., Xia, J., Zhang, H.*, Qiu, S.*, Shen, D.*, Classification of Type 2 Diabetes Mellitus with or without Cognitive Impairment from Healthy Controls Using High-order Functional Connectivity. Human Brain Mapping, 2021, 42(14): 4671-4684.
Jiang, W., Zhang, H.*, Zeng, L.-L., Shen, H., Jian, Q., Thung, K.-H., Yap, P.-T., Liu, H., Hu, D., Wang, W.*, Shen, D.*, Dynamic neural circuit disruptions associated with antisocial behaviors. Human Brain Mapping, 2021, 42 (2): 329-344
Ding, Z.#, Zhang, H.#, Lv, X.#, Xie, F., Liu L., Li, L., Shen, D., 2018. Radiation-induced Brain Structural and Functional Abnormalities in Pre-symptomatic Phase and Outcome Prediction. Human Brain Mapping, 39(1):407-427.
Chen, X.#, Zhang, H.#, Zhang, L., Shen, C., Lee, S.-W., Shen, D., 2017. Extraction of Dynamic Functional Connectivity from Brain Grey Matter and White Matter for MCI Classification, Human Brain Mapping, 38(10):5019-5034.
阿尔茨海默症和相关痴呆:
Yue, L.#, Hu, D.#, Zhang, H.#, Wen, J., Wu, Y., Li, W., Sun, L., Li, X., Wang, J., Li, G., Wang, T., Shen, D., Xiao, 2021, Prediction of 7-year’s Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment. Human Brain Mapping. DOI: 10.1002/hbm.25216.、
Kam, T.-E., Zhang, H.*, Jiao, Z., Shen, D., Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection, IEEE Transactions on Medical Imaging, 2020, 39(2): 478–487.
Ghanbari, M., Hsu, L.-M., Zhou, Z., Ghanbari, A., Mo, Z., Yap, P.-T., Zhang, H.*, Shen, D.*, A New Metric for Characterizing Dynamic Redundancy of Dense Brain Chronnectome and Its Application to Early Detection of Alzheimer's Disease, MICCAI 2020, Lima, Peru, Oct 4-8, 2020 (MICCAI 2020 NIH Award).
Jiao, Z., Huang, P., Kam, T.-E., Hsu, L.-M., Wu, Y., Zhang, H.*, Shen, D.*, Dynamic Routing Capsule Networks for Mild Cognitive Impairment Diagnosis, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019.
婴幼儿脑发育:
Wen, X., Wang, R., Yin, W., Lin, W., Zhang, H.*, Shen, D.*, Development of Dynamic Functional Architecture during Early Infancy. Cerebral Cortex,2020, 30(11): 5626-5638.
Wen, X., Zhang, H.*, Li, G., Liu, M., Yin, W., Lin, W., Zhang, J., Shen, D.*, First-Year Development of Modules and Hubs in Infant Brain Functional Networks. NeuroImage, 2019, 185:222-235.
Zhang, H., Shen, D., Lin, W., 2019. Resting-state Functional MRI Studies on Infant Brains: a Decade of Gap-Filling Efforts, NeuroImage, 185:664-684.
Sousia, M., Wen X., Zhou, Z., Jin, B., Kam, T.-E., Hsu, L.-M., Wu, Z., Li, G., Wang, L., Rekik, I., Lin, W., Shen, D., Zhang, H.*, and for UNC/UMN Baby Connectome Project Consortium, A computational framework for dissociating development-related from individually variable flexibility in regional modularity assignment in early infancy, MICCAI 2020, Lima, Peru, Oct 4-8, 2020.
Jiang, W., Zhang, H.*, Wu, Y., Hsu, L.-M., Hu, D., Shen, D.*, Early Development of Infant Brain Complex Network, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019.
Zhou, Z., Zhang, H.*, Hsu, L.-M., Lin, W., Pan, G.*, Shen, D.*, and for the UNC/UMN Baby Connectome Project Consortium, Multi-layer temporal network analysis reveals increasing temporal reachability and spreadability in the first two years of life, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019.
Kam, T.-E., Wen, X., Jin, B., Jiao, Z., Hsu, L.-M., Zhou, Z., Liu, Y., Yamashita, K., Hung, S.-C., Lin, W., Zhang, H.*, Shen, D.*, and for UNC/UMN Baby Connectome Project Consortium, A Deep Learning Framework for Noise Component Detection from Resting-state Functional MRI, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019.
Zhang, H., Stanley, N., Mucha, P.J., Yin, W., Lin, W., Shen, D., Multi-layer large-scale functional connectome reveals infant brain developmental patterns. MICCAI 2018, Granada, Spain, Sep. 16-20, 2018.
脑肿瘤:
Tang, Z., Xu, Y., Jin, L., Aibaidula, A., Lu, J., Jiao, Z., Wu, J.*, Zhang, H.*, Shen, D.*, Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients. IEEE Transactions on Medical Imaging, 2020, 39(6): 2100-2109.
Chen, L.#, Zhang, H.#,Lu, J.#, Thung, K., Aibaidula, A., Liu, L., Chen, S., Jin, L., Wu, J., Wang, Q., Zhou, L., Shen, D., 2018. Multi-label Nonlinear Matrix Completion with Transductive Multi-task Feature Selection for Joint MGMT and IDH1 Status Prediction of Patient with High-Grade Gliomas. IEEE Transactions on Medical Imaging, 37(8):1775-1787.
Cao, B., Zhang, H.*, Wang, N.*, Gao, X., Shen, D.*, Auto-GAN: Self-Supervised Collaborative Learning for Medical Image Synthesis, AAAI 2020, New York, USA, Feb 7-12, 2020 (Travel award).
Huang, P., Li, D., Jiao, Z., Wei, D., Li, G., Zhang, H.*, Shen, D.*, CoCa-GAN: Common-feature-learning-based Context-aware Generative Adversarial Network for Glioma Grading, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019.
实验室介绍:
脑疾病与智能计算实验室 (Disease and Intelligent Analytics Lab, DIAL) 在 PI 的带领下,依托国家科技部重大项目、国自然重点项目、上海市重大项目等科技项目,构建了一支配备合理的由30多人组成的人才梯队,利用上科大 AIR Lab(高级磁共振成像研究实验室)和 BID Lab(脑智发育实验室),和精神卫生中心、仁济医院、复旦儿科等医院以及联影、联影智能等企业合作,致力于探索以下研究方向:
对脑疾病和精神障碍检测更加敏感的脑网络构建技术:包括但不限于脑高阶网络、动态网络、有向网络等网络构建技术,目标指向更精准敏感的疾病检测,以及与之相关的工具开发
基于脑功能成像和脑网络的机器学习和深度学习算法:从脑结构磁共振成像、弥散磁共振成像、功能磁共振成像等构建多种脑网络并开发机器学习和深度学习算法进行基于脑网络时空特征的疾病分类、预测
脑肿瘤多模态影像分析、自动评估、手术计划:基于多模态脑成像 (MRI、CT、PET等) 的个体化、智能化脑肿瘤分割、分型、功能定位、预后评估、图像生成、基因组分析、手术计划等
婴幼儿脑发育及发育异常:构建婴幼儿发育大队列,基于人工智能和大数据开展人脑早期结构、功能、网络发育研究,构建发育常模、轨迹、图谱,研究基因-环境-影像-行为的关联,为异常发育研究提供理论依据
脑老化和老化相关疾病的早期诊断:构建人脑正常老化大队列,基于人工智能和大数据开展人脑正常和异常老化相关结构、功能、网络的改变,构建老化常模、轨迹、图谱,研究基因-环境-影像-行为的关联,为异常老化早期检测研究提供理论依据